If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+8x-1000=0
a = 10; b = 8; c = -1000;
Δ = b2-4ac
Δ = 82-4·10·(-1000)
Δ = 40064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40064}=\sqrt{64*626}=\sqrt{64}*\sqrt{626}=8\sqrt{626}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{626}}{2*10}=\frac{-8-8\sqrt{626}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{626}}{2*10}=\frac{-8+8\sqrt{626}}{20} $
| 6(x+3)+x=3(x+5)+7 | | 15=n+3+2n | | x/2+5=5 | | (3x-1)-(x+6)=-5/(1-3x)^2 | | x+3.75=11/(1/3 | | 24=2+w | | 15=3n-1+1 | | x^2+x=18.5 | | 3/7w-11=-4/4 | | -3(2x-3)=–6x+9 | | 3x-5x=-20 | | -4(t-5)+7t=9t-3 | | 6400=(400+w)•16/3 | | 6^3m=36 | | -m6=10 | | 2p-3p=-3 | | 0.60x+0.60(100)=0.30(114) | | 3(x)=2x^2-5x+1 | | -m/6=60 | | 0.5x+0.4(30)=0.3(x+40) | | 5x/6+2=x^2/21 | | 2x-9/3=-1 | | G(x)=2x^2-5x+1 | | 12s=4s-72 | | 5x/6+2=x^2 | | 0=-144+3x+84 | | 3x²+10=5x | | 51-2×(7x+2)=19 | | x/3=x/18=7/6 | | 4.5=1.4-0.4y | | 7x-10/7=-10 | | 4.8=1.25(y-17 |